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Pattern formation of sound is predicted in a driven resonator where subharmonic generation takes place. A
model allowing for diffraction of the fields �large-aspect-ratio limit� is derived by means of the multiple-scale
expansion technique. An analysis of the solutions and its stability against space-dependent perturbations is
performed in detail considering the distinctive peculiarities of the acoustical system. Numerical integration
confirms the analytical predictions and shows the possibility of patterns in the form of stripes and squares.
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I. INTRODUCTION

The topic of pattern formation, or the spontaneous emer-
gence of ordered structures, is nowadays an active field of
research in many areas of nonlinear science �1�. Transverse
modes may become unstable when the amplitude of the ex-
ternal input reaches a critical threshold value, large enough
to overcome the losses produced by dissipative processes in
the system, and a symmetry breaking transition can develop,
carrying the system from an initially homogeneous to an
inhomogeneous state, usually with spatial periodicity. Pattern
formation is commonly observed in large-aspect-ratio non-
linear systems �either physical, biological, chemical, etc.�
which are driven far from the equilibrium state by an exter-
nal input �1�.

Parametrically driven systems offer many examples of
spontaneous pattern formation. For example, parametric ex-
citation of surface waves by a vertical shake �Faraday insta-
bility� in fluids �2� and granular layers �3�, spin waves in
ferrites and ferromagnets, and Langmuir waves in plasmas
parametrically driven by a microwave field �4� or the optical
parametric oscillator �5,6� have been studied. In nonlinear
acoustics, a phenomenon which belongs to the class of the
previous examples is parametric sound amplification. As will
be shown later, when large-aspect-ratio nonlinear acoustic
resonators are considered, dissipative structures can also
emerge spontaneously, which allows one to incorporate non-
linear acoustics into the broad field of pattern formation in
nonlinear sciences.

Parametric sound amplification consists of the resonant
interaction of a triad of sound waves with frequencies �0, �1,
and �2, for which the following energy and momentum con-
servation conditions are fulfilled:

�0 = �1 + �2,

k�0 = k�1 + k�2 + �k� , �1�

where �k� is a small phase mismatch. The process is initiated
by an input pumping wave of frequency �0 which, due to the
coupling to the nonlinear medium, generates a pair of waves
with frequencies �1 and �2. When the wave interaction oc-
curs in a resonator, a threshold value for the input amplitude
is required, and the process is called parametric sound gen-
eration. In acoustics, this process has been described by sev-

eral authors under different conditions, either theoretical and
experimentally: In �7–9� the one-dimensional case �col-
linearly propagating waves� is considered, and in �10� the
problem of interaction between concrete resonator modes,
with a given transverse structure, is studied. In both cases,
small-aspect-ratio resonators, containing liquid and gas, re-
spectively, are considered. More recently, the parametric in-
teraction in a large-aspect-ratio resonator filled with super-
fluid 4He has been investigated �11�.

It is well known that optical and acoustical waves share
many common phenomena, an analogy which sometimes can
be extended to the nonlinear regime �12�. In particular, the
phenomenon of parametric sound generation is analogous to
optical parametric oscillation in nonlinear optics. However,
an important difference between acoustics and optics is the
absence of dispersion in the former. In a nondispersive me-
dium, all the harmonics of each initial monochromatic wave
propagate synchronously. As a consequence, the spectrum
broadens during propagation and the energy is continuously
pumped into the higher harmonics, leading to wave-form dis-
tortion and eventually to the formation of shock fronts. On
the contrary, dispersion allows that only few modes, those
satisfying given synchronism conditions, participate effec-
tively in the interaction process.

In acoustics, the presence of higher harmonics can be
avoided by different means. One method is based on the
introduction of some dispersion mechanism. In finite geom-
etries, such as waveguides �13� or resonators �14�, the dis-
persion is introduced by the lateral boundaries. Different
resonance modes, propagating at different angles, propagate
with different effective phase velocities. Other proposed
methods are, for example, the inclusion of media with selec-
tive absorption, in which selected spectral components un-
dergo strong losses and may be removed from the wave field
�16�, or resonators where the end walls present a frequency-
dependent complex impedance �9�. In this case, the reso-
nance modes of the resonator are not integrally related, and
by proper adjustment of the resonator parameters one can get
that only few modes, those lying close enough to a cavity
resonance, reach a significant amplitude. In any of these
cases, a spectral approach to the problem, in terms of few
interacting modes, is justified.

Therefore the selective effect of the resonator allows one
to reduce the study of parametric sound generation to the
interaction of three field modes, corresponding to the driving
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�fundamental� and subharmonic frequencies, and to describe
this interaction through a small set of nonlinear coupled dif-
ferential equations. In the present work we concentrate on
the particular degenerate case of subharmonic generation,
where �1=�2 and consequently �0=2�1, �0 being the fun-
damental and �1 the generated subharmonic, both quasireso-
nant with a corresponding resonance mode. This degenerate
case has been considered in previous experimental studies
�9,14� in the case of small-aspect-ratio cavities where trans-
verse spatial evolution is absent.

The aim of the paper is twofold: to provide a rigorous
derivation of the dynamical model describing the parametric
interaction of acoustic waves in a large-aspect-ratio cavity, as
this derivation does not exist to the best of our knowledge,
and to determine the conditions under which pattern forma-
tion of sound could be observed in an acoustic system. Inter-
estingly, the derived model, obtained from the basic hydro-
dynamics equations, turns out to be isomorphous to the
system of equations describing parametric oscillation in an
optical resonator. Such isomorphism is a very encouraging
result: On the one hand, solutions similar to those known for
optical parametric oscillation can be expected to occur in
parametric sound generation and on the other hand, this re-
sult firmly links pattern formation in cavity nonlinear acous-
tics with the wider field of pattern formation in nonlinear
science. Numerical integrations under realistic acoustical pa-
rameters confirm the predicted results.

II. DERIVATION OF THE MODEL

A. Three-wave interaction in an acoustic resonator

The physical system we consider in this paper is an acous-
tic cavity �resonator� composed of two parallel solid walls,
with thicknesses D and H located at a distance L, containing
a fluid medium inside, as described in Fig. 1. The different
media are acoustically characterized by their density � and

the propagation velocity of the sound wave, c. One of the
walls vibrates at a frequency close to one of the normal
modes of the cavity.

The resonance modes f �eigenfrequencies� of such reso-
nator can be calculated by using the equation �9�

R�tan
f

fD
� + tan

f

fH
�� + �1 − R2 tan

f

fD
� tan

f

fH
��tan

f

fL
�

= 0, �2�

where R=�wcw /�c is the ratio of wall to medium acoustic
impedances, and fD=cw /2D, fH=cw /2H, and fL=c /2L are
the fundamental resonance frequencies of each individual re-
gion, respectively. From the numerical solutions of Eq. �2�
results a nonequidistant spectrum, the position of the differ-
ent modes being determined by the properties and dimen-
sions of the different elements. Note that the particular case
corresponding to an equidistant spectrum �constant free spec-
tral range� is obtained as a limit case when we impose infi-
nite reflectance at the walls �R→�� with negligible thick-
ness. In this case Eq. �2� reduces to tan kL=0 and the modes
obey the Fabry-Perot condition k=n� /L. In such a perfect
resonator, any harmonic of a resonant driving wave is also
resonant with a higher-order cavity mode and the energy
flow into these modes leads to wave distortion and invali-
dates a modal description of the problem in terms of the
interaction among few waves.

In a lossy resonator, however, one can get the second
harmonic of the driving wave to be more detuned than sub-
harmonics with respect to a cavity resonance, thus reducing
the effectivity of the cascade process into the higher harmon-
ics. This effect is enhanced in the case of viscous media, in
which the higher frequencies experience stronger losses �ab-
sorption�. Furthermore, it is possible to get subharmonic gen-
eration slightly detuned from a cavity resonance, which is a
necessary condition for the development of spatial instabili-
ties, as will be discussed in the following sections. These two
facts justify the description of high-intensity acoustic waves
in a resonator in terms of the interaction among few fre-
quency components. Several experimental results demon-
strate this fact �7–9� and support the validity of this assump-
tion in the theoretical approach.

The main novelty of this work with respect to previous
studies is to consider the diffraction of the waves inside the
cavity. Diffraction can play an important role when the cav-
ity has a large Fresnel number, defined as F=a2 /�L, where a
is the characteristic transverse size of the cavity �for ex-
ample, a2 is the area of a plane radiator�, � is the wavelength,
and L is the length of the cavity in the direction of propaga-
tion, considered the longitudinal axis of the cavity. Some-
times the case of large F is called the large-aspect-ratio limit.
All these assumptions will be taken into account in the deri-
vation of the model in the next section.

B. Hydrodynamic equations for sound waves

As a starting point of the analysis, we consider the basic
hydrodynamic equations describing the propagation of sound
waves in liquids and gases—namely, the continuity �mass
conservation� equation

FIG. 1. Scheme of a three-element acoustic resonator. Each sec-
tion is acoustically characterized by its density an propagation ve-
locity of sound.
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��

�t
+ ���u� = 0 �3�

and the Euler �momentum conservation� equation

�� �

�t
+ u � �u = − �p + ��2u + ��B +

�

3
� � ��u� , �4�

where � is the density of the medium, u is the fluid particle
velocity, p is the thermodinamic pressure, and � and �B
represent shear and bulk viscosities, respectively. Equations
�3� and �4� must be complemented by the equation of state
p= p���. If the losses due to viscosity are small �due just to
heat conduction�, the process can be assumed to be adiabatic.
Then the pressure in the state equation can be expanded
around the equilibrium and the equation of state takes the
form

p = p0 + � �p

��
�

s
�� +

1

2
� �2p

��2�
s

2

��2 + ¯

= p0 + c0
2�� +

1

2
	��2 + ¯ , �5�

where ��=�−�0, �0 being the equilibrium value of the den-
sity, c0=���p /���s is the �low-amplitude� sound velocity,
and

	 = � �2p

��2�
s
=

c0
2

�0

B

A
,

where B /A is commonly used in acoustics as the nonlinearity
parameter and has been measured in different media �15�.
The subscript s denotes the adiabatic character of the process
and the ellipsis in Eq. �5� the nonlinearities higher than qua-
dratic, which are neglected.

Substitution of Eq. �5� in Eq. �4� leads to

�� �

�t
+ u � �u = − c0

2 � �� −
1

2
	 � ��2 + ��2u

+ ��B +
�

3
� � ��u� , �6�

which together with Eq. �3� is a two-variable model. It is
convenient to write Eqs. �3� and �6� in nondimensional form,
adopting the following normalizations:

v �
u

V
, �̄ �

�

�0
, �7�

where V is a reference velocity, small compared with c0.
Also, time and space are defined as

t̄ = �t, x̄ = kx . �8�

where � and k are the angular frequency and wave number
of a reference wave and obey �=kc0. With this normaliza-
tion Eqs. �3� and �6� have the form

��̄

�t̄
+ M��̄v + Mv�̄�̄ = 0, �9�

M�̄
�v

�t̄
+ M2�̄v�̄v = − �̄�̄ −

1

2
	̄�̄��̄ − 1�2 + �̄M2�̄2v ,

�10�

where the losses �̄, the nonlinearity 	̄, and the acoustic
Mach number M are parameters defined as

�̄ =
k

�0V
��B +

4

3
�� , �11�

	̄ =
�0

c0
2 	 �

B

A
, �12�

M =
V

c0
. �13�

In Eq. �10� we have used the identity ���v�=�2v+�

�
v, where the second �vorticity� term has been ne-
glected, since its magnitude decays exponentially away from
the boundaries �15�.

C. Perturbative expansion in the small-Mach-number limit

Under usual conditions, the acoustic Mach number takes
small values �M �10−3�, which allows us to treat Eqs. �3�
and �6� by perturbative techniques. Thus we consider a
smallness parameter � as the Mach number and express the
parameters and variables in terms of it.

Let us assume that in the dispersive resonator the changes
of the shape of the wave as a consequence of dissipation and
nonlinearity, both along the direction of propagation and
transverse to it, are small. Also, we take into account that the
changes along the transverse direction to the propagation,
due to diffraction, take place faster than along this propaga-
tion direction �17�. These assumptions allow us to consider
the problem in terms of fast and slow scales. A choice of
scales accounting for these changes is

t̄ = T + � , �14a�

�z̄, x̄, ȳ� = �z,��x,��y� , �14b�

and expand the state variables �̄ and v= �vx ,vy ,vz� as

�̄ = 1 + ��1 + �2�2, �15a�

vz = v1z + �v2z, �15b�

vx = ��v1x + ���v2x, �15c�

vy = ��v1y + ���v2y . �15d�

where the order of the transverse components of the velocity
is determined by the �slow� divergence of the beam �17�.
Note that, since at equilibrium fluid is at rest and, on other
hand, v is nondimensionalized by V �a reference velocity
smaller than c0�, the variation of v is order O�1�. Substituting
these expressions into Eqs. �9� and �10�, we obtain equations
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at different orders which can be recursively solved. The lead-
ing order O��� reads

�v1z

�T
= −

��1

�z
, �16a�

��1

�T
= −

�v1z

�z
, �16b�

which leads to linear wave equations for the particle velocity
and density. In general, the frequencies of the waves are not
resonant with a cavity eigenmode and the waves at any fre-
quency are detuned, the detuning parameter being defined as

�i = �i
c − �i, �17�

where �i is the frequency of the field and �i
c is frequency of

the cavity eigenmode closest to �i. In this case, the solution
of the order O��� takes the general form of a superposition of
standing waves:

v1z = 	
n=0

2

An�x,y,�sin��nT − ��n�� − �iT��sin�knz� ,

�18�

where �n=kn. In Eq. �18� we have considered the frequency-
selective effect of the walls discussed in the Introduction and
assume that only three modes, those with frequencies obey-
ing �1+�2=�0, can reach significant amplitudes. Also, from
Eqs. �16� we obtain that

�1 = 	
n=0

2

An�x,y,�cos��nT − ��n�� − �iT��cos�knz� .

�19�

At order O��3/2�, the equations for the fast evolution of
the transverse velocity components are obtained,

�v1x

�T
= −

��1

�x
, �20a�

�v1y

�T
= −

��1

�y
. �20b�

At order O��2� we get

�1
�v1z

�T
+

�v2z

�T
+

�v1z

�
+

1

2

�2v1z
2

�z2 +
	̄

2

��1
2

�z
− �̄

�2v1z

�z2 +
��2

�z
= 0,

�21a�

��2

�T
+

��1

�
+ �1

�v1z

�z
+

�v2z

�z
+ v1z

��1

�z
+

�v1x

�x
+

�v1y

�y
= 0.

�21b�

Finally Eqs. �21�, making use of the relations in Eqs. �20�,
can be reduced to a single wave equation for the density:

�2�2

�T2 −
�2�2

�z2 = 2
�2v1z

�z�
− �̄

�3v1z

�z3 +
	̄

2

�2�1
2

�z2 +
�2v1z

2

�z2 +
�2�1

�x2

+
�2�1

�y2 , �22�

where the smaller-order solutions appear on the right-hand
side as source terms.

A closed set of equations for the slowly varying envelopes
of mode amplitudes An and phases �n can be obtained by
substituting Eqs. �18� and �19� into Eq. �22� and imposing
the absence of secular terms in the resulting equation—i.e.,
neglecting the source contributions that contain the same fre-
quency components as the natural frequency of the left-hand-
side part in Eq. �22�. Otherwise, second-order solutions
would grow linearly, violating the smallness condition ��2
��1 assumed in the perturbation expansion. After some al-
gebra the secular terms reduce to the following real system
for the amplitudes and phases:

�Ai

�
+ �si�iAjAk sin � +

1

2
�̄�i

2Ai = 0, �23a�

Ai
��i

�
− ��iAjAk cos � −

1

2�i
��

2 Ai − �iAi = 0, �23b�

where �i , j ,k�= �0,1 ,2� and the other two equations are ob-
tained by cyclic permutations. The sign operator si= +1 for
i=1,2 and −1 for i=0. A global phase is defined as ���1
+�2−�0, ��

2 stands for the Laplacian operator acting on the
transverse space r�= �x ,y�, and � is a coupling parameter
defined as

� =
1

4
�1 +

B

2A
� . �24�

Note that in Eqs. �23� the terms proportional to �̄ account
only for viscous losses. There are in fact other loss mecha-
nisms, mainly related with finite reflectance of the walls or
diffraction losses through the open sides of the resonator.
When the losses are sufficiently small, one can generalize
Eqs. �23� and consider an effective �phenomenological� loss
parameter �i for each mode, just replacing ��̄ /2��n

2An by
�nAn. The value of these coefficents can be obtained experi-
mentally for a particular resonator by small-amplitude mea-
surements of the decay rate of a given mode, since under this
condition �neglecting nonlinearity� the amplitudes obey
�An /�=−�nAn.

Finally, for a dissipative resonator, an external source
must be provided in order to compensate the losses. Consider
that a plane wave of amplitude E and frequency �0

c is in-
jected into the resonator. In each round-trip, the amplitude of
the standing wave will increase by 2E and then

�A0

�t
=

2E

2L/c0
=

c0

L
E , �25�

where L is the length of the resonator and c0 /L corresponds
to the time taken for a wave to travel across it. By changing
to the nondimensional notation in slow time scale and as-
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suming small-amplitude changes during a round-trip, one
can consider the differential limit of Eq. �25� and incorporate
it into the evolution equation of A0 as a driving term.

A particular case corresponds to the degenerate interac-
tion, where �1=�2. This process describes subharmonic
parametric generation. In this situation, the pump and sub-
harmonic waves obey the relation �0=2�1. It is worth ex-
pressing the resulting system of equations in complex form
by defining the complex amplitudes as Bn�r� ,�
=An�r� ,�exp�i�n���. At this point we also return to dimen-
sional �physical� variables. Since amplitudes An correspond,
e.g., to dimensionless densities and pressure is related to
density by Eq. �5�, then, in the degenerate limit, we obtain
the following coupled equations for the evolutions of pres-
sure:

�p0

�t
= − ��0 + i�0�p0 − i

��0

�0c0
2 p1

2 + i
c0

2

2�0
��

2 p0 +
c0

L
pin,

�26a�

�p1

�t
= − ��1 + i�1�p1 − i

��1

�0c0
2 p1

*p0 + i
c0

2

2�1
��

2 p1, �26b�

together with their complex conjugate. In Eqs. �26�, pi cor-
responds to deviations from the equilibrium pressure values.

Equations �26� can be further simplified by adopting the
normalizations

p0 = i
2�0c0

2�1

��0
P0, �27a�

p1 =
�0c0

2�2�0�1

��0
P1, �27b�

pin = i
2L�0c0�0�1

��0
E �27c�

and introducing the dimensionless detuning parameter �n
=�n /�n. The final form of the model reads

1

�0

�P0

�t
= − �1 + i�0�P0 − P1

2 + ia0��
2 P0 + E , �28a�

1

�1

�P1

�t
= − �1 + i�1�P1 + P1

*P0 + ia1��
2 P1, �28b�

where an=c0
2 /2�n�n are the diffraction coefficients. This

form of the equations is relevant for our purposes, since their
solutions and stability have been discussed in the context of
nonlinear optics, after the model given by Eqs. �28� has been
derived for the degenerate optical parametric oscillator. A
detailed analysis of the spatiotemporal dynamics of Eqs. �28�
has been carried out during the last decade �starting with the
seminal work in �5��, and a recent overview can be found in
�19�. In the following sections, we review the basic results
regarding their homogeneous solutions and their stability,
and we study numerically the spatiotemporal dynamics under
conditions corresponding to a real acoustical resonator. Note

that the connection between the generic model �28� and the
particular acoustic problem is given by the normalizations
performed in Eqs. �27�.

III. MODULATIONAL INSTABILITIES OF
HOMOGENEOUS SOLUTIONS

Two stationary states are solution of Eqs. �28�: the sim-
plest, trivial solution

P̄0 =
E

�1 + i�0�
, P̄1 = 0, �29�

characterized by a null value of the subharmonic field inside
the resonator, and the nontrivial solution


P̄0
2 = 1 + �1
2, �30a�


P̄1
2 = − 1 + �0�1 ± �
E
2 − ��0 + �1�2, �30b�

in which both the pump and the subharmonic fields have a
nonzero amplitude and exist above a given �threshold� pump
value E=Eth. At this value, given by


Eth
 = ��1 + �0
2��1 + �1

2� , �31�

the trivial solution loses its stability and bifurcates into the
nontrivial one. The emergence of this finite-amplitude solu-
tion corresponds to the process of subharmonic generation.
Note that the fundamental amplitude above the threshold is
independent of the value of the injected pump, which means
that all the energy is transferred to the subharmonic wave.

These results have been confirmed experimentally for an
acoustical resonator in �10�. The character of the bifurcation
depends on the detuning values. As demonstrated in �10� and
also in the optical context �18�, the bifurcation is supercriti-
cal when �0�1�1 and subcritical when �0�1�1. In the
latter case, both trivial and finite-amplitude solutions can co-
exist for given sets of the parameters, which results in a
regime of bistability between different solutions.

In order to study the stability of the trivial solution �29�
against space-dependent perturbations, consider a deviation

of this state, given by Aj�r� , t�= Āj +�Aj�r� , t�. Assuming
that the deviations are small with respect to the stationary
values, one can substitute the perturbed solution in Eqs. �28�
and linearize the resulting system in the perturbations �Aj.
The generic solutions of the linear system are of the form

��Aj,�Aj
*� � e��k��teik�·r�, �32�

where ��k�� represents the growth rate of the perturbations
and k� is the transverse component of the wave vector,
which in a two-dimensional geometry obeys the relation

k�
2=kx

2+ky
2. The growth rates, which depend on the wave

number of the perturbations, are obtained as the eigenvalues
of the linear system. This analysis has been performed before
�5�, and we present here the main conclusions, omitting de-
tails.

The eigenvalue �and consequently the instabilities� pre-
sents a different character depending on the sign of the sub-
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harmonic detuning. If �1�0, which corresponds to a subhar-
monic frequency smaller than that of the closest cavity
mode, the eigenvalue shows a maximum at k�=0, the
emerging solution being homogeneous in transverse space,
with amplitude given by Eq. �30�. On the contrary, in the
opposite case �1�0, which corresponds to field frequencies
larger than the nearest cavity mode, the maximum of the
eigenvalue occurs for perturbations with transverse wave
number

k� =�−
�1

a1
. �33�

The emerging solution in this case is of the form of Eq.
�32�, which represents a plane wave tilted with respect to the
cavity axis. This solution shows spatial variations in the
transverse plane, and consequently pattern formation is ex-
pected to occur.

Since k� is the modulus of the wave vector, the linear
stability analysis in two dimensions predicts that a con-
tinuum of modes within a circular annulus �centered on a
critical circle at 
k�
=k� in �kx ,ky� space� grows simulta-
neously as the pump increases above a critical value. This
double-infinite degeneracy of spatial modes �degenerate
along a radial line from the origin and orientational degen-
eracy� allows, in principle, arbitrary structures in two dimen-
sions.

The threshold for pattern formation follows also from the
eigenvalue and is given by

Ep = �1 + �0
2. �34�

The predictions of the stability analysis correspond to the
linear stage of the evolution, where the subharmonic field
amplitude is small enough to be considered a perturbation of
the trivial state. The analytical study of the further evolution
would require a nonlinear stability analysis, not given here.
Instead, in the next section we perform the numerical inte-
gration of Eqs. �28�, where predictions of the acoustic sub-
harmonic field in the linear and nonlinear regime are given.

IV. NUMERICAL RESULTS IN THE ACOUSTICAL
CASE

The analytical predictions of the linear stability analysis
have been numerically confirmed for Eqs. �28� in previous
studies in the context of nonlinear optics. In this section we
demonstrate the adequacy of these result for the acoustical
case. For this aim, we first evaluate the different parameters
appearing in Eqs. �26� for a concrete case.

Consider a resonator composed by two identical walls of
thickness D=H=0.5 cm made of a lead zirconate titanate
�PZT� piezoelectric material �ct=4400 m/s, �t=7700 kg/
m3�, containing water �cm=1480 m/s, �t=1000 kg/m3�. For
this case R=22.89. The length of the medium L can be var-
ied in order to modify detunings. If the resonator is driven at
a frequency f0=4 MHz, then subharmonic generation is ex-
pected to occur at f1=2 MHz. The corresponding detunings
have been numerically evaluated from Eq. �2�. For a cavity
length L=3 cm, the pump is almost resonant with a cavity

mode, �f0= f0
c − f0�0 kHz, and the subharmonic is detuned

by �f1= f1
c − f1�−1.6 kHz. Furthermore, under these condi-

tions the second harmonic at f2=8 MHz is highly detuned by
�f2= f2

c − f2�−3.7 kHz, and therefore it will reach a small
amplitude.

The loss coefficients, as stated before, can be obtained for
small-amplitude measurements of the decay rate of each
mode in the resonator. In particular, a measurement of the
quality factor for the different cavity modes, defined as Qi
=�i /2�i, was performed in �9� for a similar interferometer.
For the frequencies of interest, the measured quality factors
take values of the order of 103–104. From this result we can
conclude that reasonable values for the decay rates are �0
=�1=5
103 rad/s, which allows us to evaluate the rest of
the parameters in the model. The normalized detuning pa-
rameters corresponding to this case are �0=0 and �1=−1.6,
and diffraction coefficients result in a0=8.7
10−6 and a1
=2a0 Finally, the nonlinearity parameter of water at 20 °C is
B /A=5, which substituted in Eq. �24� gives �=0.875.

The theory of the previous section predicts that, when the
threshold value Eq. �34� is achieved, a periodic pattern with
a characteristic scale given by Eq. �33� develops. For the
above conditions, the normalized threshold value is Ep=1,
and the corresponding input pressure at the driving wall is
obtained from the last of Eqs. �27� and results in pin
�0.1 MPa. Also, the wavelength of the pattern is obtained
from ��=2� /k��1.5 cm. Then, in order to observe the pat-
tern the transverse section must contain several wavelengths,
which in turn implies a transverse size of 10 cm or more. All
these values can be considered as realistic.

In order to check the analytical predictions, we integrated
numerically Eqs. �28� by using the split-step technique on a
spatial grid of dimensions 128
128 �6�. The local terms,
either linear �pump, losses and detuning� and nonlinear, are
calculated in the space domain, while nonlocal terms �dif-
fractions� are evaluated in the spatial wave-vector �spectral�
domain. A fast Fourier transform �FFT� is used to shift from
spatial to spectral domains in every time step. Periodic
boundary conditions are used.

As initial condition, a noisy spatial distribution is consid-
ered and the parameters are those discussed above, for which
a pattern forming instability is predicted. Figure 2 shows the
result of the numerical integration. In Figs. 2�a� and 2�b�
several snapshots of the evolution at different times are
shown, which eventually result in a final stable one-

FIG. 2. Developement of stripped patterns for �1=−1.6, �0=0,
�0=�1=5
103, and E=2, as obtained by numerical integration of
Eqs. �28�. The distributions correspond to evolution times t
=0.01 s �a�, t=0.1 s �b�, and t=1 s �c�.
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dimensional pattern in the form of stripes, shown in Fig.
2�c�.

Numerical simulations for different detunings have been
performed. A systematic study shows that in most of the
cases the system develops striped patterns with arbitrary ori-
entations. However, in some cases a pattern with squared
symmetry results as the final stable state. An example of
evolution leading to squared patterns is shown in Fig. 3,
obtained for �1=−4, �0=−8, and E=1.2.

V. CONCLUSIONS

The pattern formation properties of an acoustical resona-
tor where subharmonic generation takes place have been dis-
cussed from the theoretical point of view. A model allowing
for diffraction of the fields �large-aspect-ratio limit� has been
derived by means of the multiple-scale expansion technique.
The obtained model, which turns out to be isomorphous to
that obtained for optical parametric oscillator, has been ana-
lyzed in detail considering the distinctive peculiarities of the
acoustical system. A typical acoustical configuration has
been considered, and the predictions of the linear stability
analysis have been confirmed by numerical integration of the
model equations under realistic conditions. Numerics show
that transverse patterns in the form of one-dimensional
stripes are usually obtained as the final stable state, although

the system can support also patterns with more complex
structures, such as squares, hexagons, and localized struc-
tures.

The connection with optical parametric oscillation de-
serves one further comment: We would like to note that there
has been several experimental attempts to verify the pattern
formation scenario predicted by Eqs. �28� in a nonlinear op-
tical resonator �20,21�. Although some transverse patterns
with different latticelike structures have been observed, the
use of other cavities different than planar �confocal and con-
centric� was required. Owing to the complete analogy be-
tween the model derived in this paper and the model describ-
ing optical parametric oscillation in planar resonators, we
believe that the acoustical resonator could be a good candi-
date for the experimental observation of transverse patterns
in a planar �Fabry-Perot� cavity. In such a way, the acoustical
resonator could be helpful for checking an amount of theo-
retical predictions for optical parametric oscillation which
presents an extremely hard experimental realization in op-
tics.

Even more, as has been repeatedly shown �6,22�, at cer-
tain limiting cases, optical parametric oscillation can be de-
scribed by universal order parameter equations, such as the
parametrically driven Ginzburg-Landau equation �22� in the
large-pump-detuning limit or the real Swift-Hohenberg equa-
tion �6� in the small-pump-detuning case. The universal char-
acter of these ubiquitous order parameter equations estab-
lishes a tight connection of nonlinear acoustics not only with
nonlinear optics, as mentioned aboved, but with the wider
field of nonlinear science. We think that the recognition of
these links could help to unify scattered research on pattern
formation in nonlinear acoustics as well as help to observe
phenomena difficult to observe in nonlinear systems different
from acoustics. Experimental work in this direction is in
progress.
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